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Abstract. We propose a model to describe electric discharge in inhomogeneous insulators 
by introducing an extemal Laplacian field in the invasion percolation model. The pattems 
generated have a fractal structure with a tunable fractal dimension. 

The growth of fractal interfaces has recently become an intensively studied problem 
[ 1,2]. In general, there are two important reasons for the appearance of such highly 
ramified structures: it is either the inhomogeneity of the medium or a non-local 
diffusion-type field which results in fractal growth. A combination of these two major 
approaches is expected to contribute to the understanding of growth processes in 
random media. 

The problem of capillary dominated two-phase fluid flow in porous media has 
recently been investigated using the invasion percolation (IP) model [3-51. In IP the 
random medium is represented by a regular lattice in which each bond of the lattice 
is assigned a random number, drawn from a uniform distribution on the unit interval 
[0,1]. The random numbers specify the pressure at which a bond can be filled with the 
invading fluid. The advance of the invading fluid consists of a sequence of discrete 
steps in which, at each stage, that pore (bond) on the interface which has the highest 
threshold capillary pressure, i.e. the one with the largest assigned random number, is 
filled. 

Invasion percolation is applicable to the description of the moving interface when 
a non-wetting fluid is replacing a wetting one in an inhomogeneous medium. In the 
case, however, when a less viscous fluid is injected into a porous medium filled with 
a more viscous fluid an additional instability appears and the invading fluid develops 
long, branching fingers [6-81. This means that in addition to the inhomogeneity of 
the medium the pressure distribution in the replaced, more viscous fluid has to be also 
taken into account through the solution of the Laplace equation with moving boun- 
daries. Similarly, when an electric discharge takes place in an inhomogeneous insulator, 
the potential U satisfies the same equation Vzu = 0. One possible way to simulate the 
behaviour of the moving boundary in a field satisfying the Laplace equation is provided 
by the dielectric breakdown model [9] and its variations [ 10, 111 which are also closely 
related to diffusion-limited aggregation [ 121. Chen and Wilkinson [8] used an alterna- 
tive approach to a problem related to ours by solving the Laplace equation numerically 
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in order to describe the interface of a bubble growing in a network of channels with 
random radii. 

In this letter we generalise the standard IP by introducing an external Laplacian 
field. We have investigated two different versions of our model which we propose as 
models of electrical discharge breakdown in dirty media. 

Consider a hypercubic lattice with a charge source at the origin. The bonds are 
insulating and carry a breakdown coefficient B which is randomly distributed in the 
unit interval [0, 11. The potential satisfies the Laplace equation Vzu = 0 where U = 0 
on the conducting discharge pattern after the breakdown has taken place and U = 1 
on a circle with a fixed large radius. We have studied the growth of the discharge 
pattern under two conditions. In model I, in each time step a single new bond which 
is the bond with the largest value of Bus on the interface breaks down, where p is an 
adjustable constant. In model 11, all bonds on the interface have the chance of breaking 
down, with the probability Bu’/P,,, where P,,, is the largest value of Bu’. Thus 
bonds with the maximum value of Bus, i.e. P,,,, always break down and those having 
smaller values of Bus break with smaller probability. In both models, after each 
growth step, the potential U is ‘relaxed’ by replacing U on each lattice site by the 
average of the potential on the four nearest-neighbour lattice sites. 

Initially we performed simulations of model I on a square lattice placing the growth 
site at the centre and a circle of unit potential at a distance R,,,, where R,,, was 
always chosen to be much greater than the extent of the growing pattern. We observed 
strong anisotropy in the growth patterns such that only a single almost one-dimensional 
branch grows out from the seed. Although several branches develop along the way, 
only one main trunk keeps growing to infinity. For this reason we carried out most 
of our simulations of model I on a strip geometry where the initial growth site was 
placed at the centre of one side of a rectangular box and the other pole was the plate 
of the opposite side kept at constant potential of unity. We employed periodic boundary 
conditions for the transverse direction. 

For the wide range of values of p (from f to &) the discharge pattern appears 
qualitatively similar. Figure 1 shows a pattern of 800 steps on an 80x200 grid with 
p = $. The pattern appears to have branches and wiggles at all length scales. We have 
analysed the structure of the patterns to see if it has a scaling or fractal geometry [ 131. 
In figure 2 we present log-log plots of N against L, where N is the average number 
of points belonging to the pattern which fall within a box of size L centred on a point 
on the pattern, averaged over the whole pattern. From figure 2 we see that log N 
appears to scale linearly with log L indicating that the patterns have a fractal structure 
with the fractal dimension D given by the relation 

N -  L ~ .  ( 1 )  
The values of D for various p are shown in table 1.  

In model 11, we have studied the growth pattern on a square lattice with the initial 
growth site at the origin, because in this model we did not observe any anisotropy in 
the patterns. A typical pattern in the simulations of model I1 is shown in figure 3 for 
p = 1. The maximum span of this pattern is 180 sites across. The cluster contains 4630 
particles. The most striking feature of this pattern is its lack of anisotropy due to the 
underlying square lattice. This is in contrast to the cross- and square-shaped patterns 
recently found in a related model [lo] where growth occurred on a homogeneous, 
rather than a random, square lattice. It appears that, at least up to the cluster sizes 
studied here, the underlying lattice does not affect the shape of the cluster. However, 
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Figure 1. A pattern generated after 800 growth steps using model I with p = 
geometry with periodic boundary conditions in the transverse direction. 

on a strip 

0 1 2 3 4 
log L 

Figure 2. Log-log plot of N against L for model I, where N is the number of sites belonging 
to the pattern which fall within a box of size L centred on a point on the pattern, averaged 
over the whole pattern. The slope of the straight line gives D = 1.25 for p =;. 

Table 1. Values of the fractal dimension D for various B in model I. 

B D 

I 
6 1.37 
I 

I 
5 1.25 
5 1.16 
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Figure 3. A cluster of 4630 sites generated using model 11. In contrast to the patterns in 
a homogeneous medium (see reference [lo]), the patterns generated in a random medium 
do not have an anisotropic stntcture for the same size clusters. 

it is possible that in analogy with diff usion-limited aggregates, very large clusters 
eventually take on the fourfold symmetry of the square lattice [14-161. 

In order to investigate the fractal properties of these clusters we have determined 
the dependence of the cluster size N on the radius of gyration R and the average 
number of particles within a box of size L centred on the seed particle. The results, 
averaged over ten different growths up to N - 5000, are shown in figure 4. From the 

1 2 3 4 
I n  R, or In L 

Figure 4. Log-log plot of the cluster size (number of sites) against the length of the cluster. 
The squares are the data for the number of sites in a cluster with a radius of gyration R,. 
The full circles are for the average number of sites falling within a box of size L centred 
on a point in the cluster. The slope of the straight lines gives D - 1.69. 
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slopes of the straight lines in figure4, the fractal dimensions DRG and DB determined from 
the relations N - R D ~ o  and 15- LDs are found to be 

D R G  = 1.70 f 0.05 

D, = 1.68 f 0.05. 

These results agree with the estimates of D for DLA on a square lattice [15] and 
with the data for the same model in a homogeneous medium [lo]. Thus, the presence 
of the random medium appears to change the shape of the clusters, but not their fractal 
dimension. 

In conclusion, we studied the problem of electrical discharge patterns [ 171 in dirty 
media by solving the Laplace equation for the field and applying invasion percolation 
as a rule for breaking down a bond in the disordered lattice representing the random 
medium. In contrast to previous work on dielectric breakdown in homogeneous media 
the growth occurs deterministically in our models. In the first model only one point 
of the discharge pattern grows with time. This leads to an extremely stringy, almost 
linear, branch with a fractal dimension of about 1.2. In the second model, all bonds 
on the interface can break with varying probabilities that depend directly on the local 
electric field and the random breakdown factor. In this case the fractal dimension and 
the shape of the clusters are similar to those found for the dielectric breakdown model 
and diffusion-limited aggregate. However, up to the cluster sizes of about 5000, we 
did not observe any anisotropy with respect to the lattice structure. 

This research was supported by the National Science Foundation and the Office of 
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